www.isi.report

ISI Report

(International Science Information Report)

(International Standards Indexing Report)

A Hybrid Forecasting Method for Anticipating Stock Market Trends via a Soft- Thresholding De-noise Model and Support Vector Machine (SVM)

Open PDF in Browser
World Basic and Applied Sciences Journal, 2023

Autour(s)

  • Lixuan Zhang, Chang Li, Lee Chen, Don Chen, Zheng Xiang, Bing Pan

Abstract

Stock market time series are inherently noisy. Although support vector machine has the noise-tolerant property, the noised data still affect the accuracy of classification. Compared with other studies only classify the movements of stock market into up-trend and down-trend which does not concern the noised data, this study uses wavelet soft-threshold de-noising model to classify the noised data into stochastic trend. In the experiment, we remove the stochastic trend data from the SSE Composite Index and get de-noised training data for SVM. Then we use the de-noised data to train SVM and to forecast the testing data. The hit ratio is 60.12%. Comparing with 54.25% hit ratio that is forecasted by noisy training data SVM, we enhance the forecasting performance.

About ISI Report:

www.isi.report access to a wide range of reputable ISI Journals and accurate citation data. The platform empowers users to analyze critical metrics such as Impact Factor, H-index, Journal Ranking, and Citation Analysis, supporting precise evaluation of Research Impact and Research Visibility. Through Journal Citation Reports and other Scholarly Metrics, it provides essential guidance for journal selection, effective publication strategies, and informed research decisions. Its Publishing & Submission workflow includes Peer Review, compliance with Author Guidelines, Manuscript Preparation, and Publication Timeline management, with both Open Access and Close Access options for flexible dissemination. Adherence to Research Quality & Ethics standards, including Plagiarism Check, Editorial Board oversight, Research Methodology, and Literature Review support, along with Digital Object Identifier (DOI) assignment, ensures high-quality, traceable publications. Researchers can maximize their impact through Research Citation management, enhanced Research Collaboration, and access to Research Funding opportunities. Publishing via www.isi.report and its affiliated platform www.isi.ac increases the likelihood of Indexing and international recognition, with articles available in multiple formats, including physical and online versions. These platforms play a critical role in advancing research quality, improving Research Visibility and Research Impact, and guiding scholars toward scientific growth, influence, and widespread dissemination of their work.

Special thanks to:

(Elsevier, Science Direct, Springer, Springer Nature, Wiley, Taylor & Francis, Nature Publishing Group (Nature journals), Oxford University Press, Cambridge University Press, SAGE Publications, CRC Press, Pearson Education, McGraw Hill, Cengage, Wolters Kluwer, IEEE Standards Association, Institute of Electrical and Electronics Engineers (IEEE), Association for Computing Machinery, American Chemical Society (ACS), Royal Society of Chemistry (RSC), Society for Industrial and Applied Mathematics (SIAM), American National Standards Institute, American Society of Mechanical Engineers, American Society of Civil Engineers, ASTM International, NFPA, Brazilian National Standards Organization, SAGE Journals, ProQuest, JSTOR, Emerald, Scholastic, Macmillan Learning, Hodder & Stoughton, MDPI, PLOS (Public Library of Science), Cambridge Scholars Publishing, Google Scholar, Scopus (Elsevier), Web of Science (Clarivate), DOAJ, arXiv, bioRxiv, medRxiv, EBSCOHost)

Powered by IS Indexing Software © All Rights Reserved.