
International Journal of Basis Applied Science and Study      Volume 9, Issue 12 – 2023 

Copyright © The Author(s). Published by Scientific Academic Network Group. This work is licensed under the Creative Commons Attribution International License (CC BY). 

 
Machine	learning	attitude	towards	temperature	report	forecast	in	

additive	manufacturing	procedures 
 

Chidi Yun 1, Joe Ewani 2, Wilmin Bitala 2, Ibrina Browndi 2 
1 Department of Computer Science, Rivers State University, Port Harcourt, Nigeria 

2 Department of Urban and Regional Planning, Rivers State University, Port Harcourt, Nigeria 

	

ABSTRACT 
Additive Manufacturing (AM) is a manufacturing paradigm that builds three-dimensional objects from 
a computer- aided design model by successively adding material layer by layer. AM has become very 
popular in the past decade due to its utility for fast prototyping such as 3D printing as well as 
manufacturing functional parts with complex geometries using processes such as laser metal 
deposition that would be difficult to create using traditional machining. As the process for creating an 
intricate part for an expensive metal such as Titanium is prohibitive with respect to cost, 
computational models are used to simulate the behavior of AM processes before the experimental run. 
However, as the simulations are computationally costly and time- consuming for predicting multiscale 
multi-physics phenomena in AM, physics-informed data-driven machine-learning systems for 
predicting the behavior of AM processes are immensely beneficial. Such models accelerate not only 
multiscale simulation tools but also empower real-time control systems using in-situ data. In this paper, 
we design and develop essential components of a scientific framework for developing a data-driven 
model-based real-time control system. Finite element methods are employed for solving time-
dependent heat equations and developing the database. The proposed framework uses extremely 
randomized trees - an ensemble of bagged decision trees as the regression algorithm iteratively using 
temperatures of prior voxels and laser information as inputs to predict temperatures of subsequent 
voxels. The models achieve mean absolute percentage errors below 1% for predicting temperature 
profiles for AM processes. 
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1.0 INTRODUCTION 
Additive Manufacturing (AM) is a modern manufacturing approach in which digital 3D design data 
is used to build parts by sequentially depositing layers of materials. AM techniques are becoming 
very popular compared to traditional approaches because of their success in building complicated 
designs, fast prototyping, and low-volume or one-of-a-kind productions across many industries [1-7]. 
Direct Metal Deposition (DMD) is an AM technology where various materials such as steel or 
Titanium are used to develop the finished product. Computational simulations are an essential part of 
the AM design and optimization as they eliminate the trial and error on expensive manufacturing 
processes. Finite element-based multi-physics simulation models (FEM) are designed to replicate the 
AM process before generating the required part using AM. However, FEM-based simulations are 
computation- ally costly and time-consuming [8-17]. This leads to the motivation to develop a 
predictive tool based on machine learning (ML) that can instantaneously yield the simulation result 
instead of performing expensive physics-based simulations. A real-time AM control system can be 
useful in manufacturing because it can control machines considering the changes in the environment 
and the machine itself [18-25]. This can be more important in AM since most of the vital parameters in 
the quality of final product change considerably during the build process. The temperature field 
created while building a part using AM is one of the critical components in determining 
microstructure, porosity, and grain size. This system requires a fast data-driven predictive model that 
can relate machine parameters and replicate desired property behavior accurately using ML 
techniques, without the need for computationally expensive calculations. There has been an upsurge of 
interest in the manufacturing community to connect and share data be- tween geographically 
distributed facilities [26-33]. We believe a significant amount of experimental data will be available in 
the near future for manufacturing processes, especially AM. This urges the scientific community to 
develop suitable data- driven tools and techniques. In this work, we use Generalized Analysis for 
Multiscale Multi-Physics Application (GAMMA), a FEM based method for developing the database to 
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train our model-based control system [34-42]. GAMMA is used to solve the time-dependent heat 
equation and simulate the manufacturing DMD process at the part scale. As the AM process is a 
spatiotemporal phenomenon (since there is cooling and reheating depending on whether and when a 
neighboring element is created), any approach for predicting the temperature profile must include the 
information about neighboring voxels as well as temporal information. In our proposed approach, 
we harness this characteristic of the AM process during feature reconstruction for our learning system 
[43-54].  
 

2.0 LITERATURE REVIEW 
The heat flow during DED is a quasi-stationary process, with respect to moving arc heat source. To be 
specific, the temperature distribution in the melt pool surface does not change with time except for 
initial and final transients. Thus, thermal sensing techniques are an effective way of monitoring DED. 
Thermal methods are fast when compared to other non-destructive testing methods such as ultrasonic, 
for quality monitoring of process [1-4]. It is a very feasible process and allows rapid results during 
manufacturing of parts. Every object emits electromagnetic radiation from its surface proportional to 
its temperature. This intrinsic radiation associated with temperature is called infrared radiation and can 
be used for temperature measurement. Khanzadeh et al. developed a thermal sensing system with a 
pyrometer and IR camera to analyze the temperature changes in laser-based AM process [5-9]. The 
melt pool images were analyzed using self-organizing maps (SOM). The pro- posed methodology was 
able to detect the porosity locations with an accuracy of 85%. Sreedhar et al. developed an online 
monitoring system for gas tungsten arc welding (GTAW) using thermal images. The authors noticed a 
distinctive pattern at the defective locations over non-defective areas. Mireles et al. proposed in-situ 
monitoring technique for defect detection [10-14]. The authors mapped the results obtained from 
computed tomography (CT) and layer-wise thermography to find defects. Krauss et al. developed a 
model to detect flaws in selective laser melting (SLM) process using thermography measurements of 
molten pool [15-21]. Analytical models of temperature distributions of wire-based DED have been 
extensively studied in literature. Rosenthal and Rykalin developed analytical models to calculate weld 
dimensions from temperature distributions of moving point heat source. Several analytical models 
have been developed for additive manufacturing processes. Pinkerton and Li derived a model that is 
applicable for low travel speeds from Rosenthal equations [22-28]. Beuth and Klingbeil developed 
analytical model to predict melt pool length. However, the performance of analytical models for in-situ 
monitoring of additive manufacturing processes is questionable. Also, physics-based analytical models 
cannot address the uncertainties and variances that occur during a process. Numerical models of 
additive manufacturing processes have been shown to be efficient in predicting thermal profile given 
all the boundary conditions. Hejripour et al. developed a fluid flow and heat transfer model for 
WAAM process [29-34]. The author predicted the shape of deposited material for single layer using an 
arbitrary LagrangianEulerian method. Kou proposed a 3D model of WAAM process to predict 
material dimensions and temperature distributions from machine operating parameters. The model was 
developed by taking into account electromagnetism, fluid flow and heat transfer. Zhang et al. derived a 
relationship between thermal profile and microstructures evolution in melt pool by using finite element 
method. Numerical models have some important limitations that include high computational costs, 
oversimplified assumptions and various meshing schemes. Data-driven models of melt pool 
temperature during DED processes have recently gained a considerable amount of interest among the 
researchers. Khanzadeh et al. detected porosity in additively manufactured samples from melt pool 
temperature profile using supervised machine learning techniques [35-42]. The extracted features of 
melt pool images were fed to k-nearest neighbor (kNN) method and the predicted results were in good 
coherence with experimental results. Mozaffar et al. estimated high-dimensional thermal profile in 
DED process using the large amount of data obtained from the fine element code. A gated recurrent 
unit (GRU) model was used to predict the temperature profile and the results of model shown high 
accuracy. However, general applicability of these models are questionable due to the stand-alone 
models used [43-51]. For example, in CMT technology, the process behavior leads to a seasonal trend 
and that need to be addressed during forecasting. The stand-alone models may fail to understand the 
process profoundly. In recent years, many researchers have combined CNN and LSTM model to 
exploit the benefit of spatial and sequential features in variety of applications. Huang et al. proposed a 
particulate matter (PM2.5) concentration forecasting system by combining CNN and LSTM networks. 
Further, the authors evaluated model using MAE and RMSE and concluded that the performance of 
model is better than the traditional machine learning models [52-57]. A similar work was reported for 
forecasting PM2.5 using CNN-LSTM network. Kim et al. proposed a hybrid CNN-LSTM model to 
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predict the residential electrical energy consumption and analyzed the various variables that affect the 
prediction of energy consumption. Rehman et al. improved the accuracy of movie reviews sentiment 
analysis [58-63]. A considerable amount of research has been conducted in the field of natural 
language processing using CNN-LSTM networks. In the field of medical image processing, Petmezas 
et al. developed an automatic atrial fibrillation detection system from electrocardiogram (ECG) signals 
using CNN-LSTM network with a high sensitivity and specificity. Vidal et al. used CNN-LSTM 
network to predict the future volatility of gold prices and the performance is compared with the other 
classic models. The CNN-LSTM network proved to be a potential technique in forecasting time series 
and opening up new possibilities in various areas of applications. system include the distance of a 
given voxel from the current laser beam in the x, y and z axes, laser intensity, time at which the point 
is created, the time elapsed, and tool speed [64-70]. One of the advantages of a real-time system is 
instead of training a prior model ahead of time, one can be developed in-situ. This is crucial for the 
versatility of ML-driven control system, especially as factors such as laser path, laser speed, and laser 
temperature can largely influence the temperature profile in AM processes which in turn can predict 
presence of residual stress. Residual stress caused in AM is the critical issue for fabricated metal parts 
since steep residual stress gradients generate distortion which dramatically deteriorate the 
functionality of the parts. The proposed approach uses extremely randomized trees (ERTs), a tree-
based ensemble algorithm to iteratively train a model-based control system. A model is developed 
on the features of first m voxels to predict the temperature of next n voxels at the first stage, and then 
iteratively a new model is developed at every subsequent stage using the ground-truth temperature of 
m voxels as well as the predicted temperature of the n voxels [71-79]. 
 
 
 
 
 
 
 
 
 
 

Fig b: DMD overall setup 
	
	

 
 

 
 

 
 

Fig b: DMD Laser Path on Substrate 
 

Fig. 1. Additive Manufacturing using Direct Metal Deposition (DMD) process. The laser source provides the heat while the 
powder stream provides the metal for the deposition. The metal powder gets melted by the heat from the laser beam and 
deposited on the substrate. The laser scans over the substrate in a zigzag motion. 
 

The result of this work is a real-time iterative supervised predictive model that achieves % mean 
absolute error (% MAE) below 1% for predicting temperature profiles for AM processes. The 
iterative model outperforms a tradi- tional model that does not use predicted intermediate voxel 
temperatures. The code is made available for the research community [3-9]. The rest of the paper is 
organized as follows. Section II provides a brief background of AM and DMD, and the FEM code 
used for developing the database and some related works for application of machine learning in 
materials informatics, and specifically AM. In Section III, we explain the generation and 
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transformation of the dataset and describe the input features and voxel categories. We describe the 
motivation and methodology and development of the dataset in Section IV. We discuss the 
experimental settings and results in Section V, and finally in Section VI, we summarize our 
conclusions with some future directions [11-18]. The initial development process for creating a three- 
dimensional object using computer-aided design (CAD) for a layer by layer deposition was 
realized due to a desire for rapid prototyping,  It reduced the time-cycle of realizing an initial 
prototype after the conception of de- sign by engineers. Among the major advances that this process 
presented to product development are the time and cost reduction, and the shortening of the product 
development cycle. Further, it led to the possibility of creating shapes that were difficult to be 
machined using traditional manufacturing processes. AM can appreciably reduce material waste, 
decrease the amount of inventory, and reduce the number of distinct parts needed for an 
assembly. Further, AM can reduce the number of steps in a production process, both in the case of 
tool making as well as direct manufacturing, reducing the need for manual assembly. Besides, AM 
processes can significantly reduce the total amount of tooling required and its impact on the cost. AM 
parts can be manufactured in an almost final state, thus reducing the amount of connecting parts 
required to put them together and decreasing part count [19-28].  

 

 
 

Fig. 2. The simulated metal surface built using DMD is depicted in the figures. The first figure demonstrates the metal created 
using DMD on the substrate with the temperature scale. The color of the metal surface indicates the spatio-temporal 
characteristic of the DMD process. 

 
DMD is an additive manufacturing technology using a laser to melt metallic powder. DMD 
processes can produce fully dense, functional metal parts directly from CAD data by depositing 
metal powders using laser melting and a patented closed-loop control system to maintain 
dimensional accuracy and material integrity [23-29].  Heat is generated as a focused heat 
source such as a laser to sufficiently melt the surface of the substrate and creates a melt pool. A 
focused powder stream provides material for the melt pool using to form a raised portion of the 
material. The nozzle is moved over the substrate using a computer-controlled positioning system to 
create the desired geometry. This is illustrated in Figures 1 and 2 that depict the DMD process 
and laser motion, and the metal surface built across layers, respectively. Finite element method 
(FEM) analysis is a numerical approach for solving differential equations over complex geometries 
with broad applications in simulating structural properties and fluid dynamics. In this method, first 
the domain is discretized into small elements, and then a system of equations is assembled over all 
the elements [31-38]. GAMMA is a FEM frame- work that solves transient heat transfer equations 
for metal powder-based AM processes such as Directed Energy Deposition (DED) and Selective 
Laser Melting (SLM). Although an accurate thermal analysis of AM provides vital information for 
determining microstructure evolution and mechanical performance of the part, this kind of analysis 
can take weeks or months of computing time and therefore too computationally expensive for 
large-scale problems or optimization purposes [39-44]. For a given set of processing parameter 
inputs such as build geometry, laser power, and scan speed, GAMMA calculates spatially-
dependent thermal histories within the part, such as temperature profiles and maximum cooling rate. 
In this work, we use GAMMA to generate the database to train our ensemble model. The idle pace 
of development and deployment of new/improved materials has been deemed as the main 
bottleneck in the innovation cycles of most emerging technologies. Exploring and harnessing the 
association between processing, structure, properties, and performance is a critical aspect of new 
materials exploration [45-51]. Data-driven techniques provide faster methods to know the important 
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properties of materials and to predict feasibility to synthesize materials experimentally. This can 
expedite the research process for new materials development. Many initiatives to computationally 
assist materials discovery using ML techniques have been undertaken.  There has been some 
limited work on the application of ML techniques for AM processes. Mozaffar et al. proposed a 
data-driven approach to predict the thermal behavior in a directed energy deposition process for 
various geometries using recurrent neural networks [52-60]. The proposed approach mapped the 
position of a point on the printing surface, the time of deposition, the distance of the closest 
cooling surface, and laser parameters with the thermal output. Baturynska et al. propounded a 
conceptual framework for combining FEM and ML methods for optimization of process parameters 
for powder bed fusion AM. Choy et al. designed a novel recurrent neural network architecture 
3D recurrent reconstruction neural network (3D-R2N2) that learned mapping from images of 
objects to their underlying shapes in an AM simulation environment. Scime et al. developed 
supervised as well as unsupervised models for detecting irregularities and flaws on the laser bed 
during the AM process [64-71]. 
 

3.0 RESEARCH METHODOLOGY 
 

The main idea of this research is the development of hybrid deep learning model for forecasting melt 
pool temperature during additive manufacturing process by exploiting the benefits of convolutional and 
long short-term memory networks. Convolutional networks are special kind of neural networks for 
processing grid-like topology, such as time series (1D) and images (2D). They have been effective for 
learning spatial information of time series. Whereas, LSTM networks are tremendously successful in 
identifying short and long-term dependencies. Thus, the proposed CNN-LSTM model for forecasting 
melt pool temperature combines the advantages of both CNN and LSTM networks. The hybrid model 
consists of two components: The first component consists of convolutional and pooling layers, in 
which features are developed from the internal representation of time series data, while the second 
component exploits the features generated by LSTM and dense layers. Each layer is briefly discussed 
in the following sections [67-71]. Figure 1 shows the 1D convolutional operation. Convolutional 
networks have advantages such as sparse interactions and weight sharing over multilayer perceptron 
networks. This effectively reduces the number of parameters used in model computation. The output s 
in Fig. 1 is the convolved output of three inputs, that is, the output is only affected by the kernel width. 
Control systems in manufacturing can be divided into two broad categories. The first class is error-
based control systems in which changing parameters (parameters of manufacturing machine such as 
laser power, speed) are estimated and based on the error values from the experiment, the initial guess is 
corrected until the desired criteria is met [72-79]. The second class is model-based in which instead of 
estimating the initial value of machine parameters, they will be determined by a model. While an error 
based control system can be useful in many applications such as motion control, its application in AM 
process parameter control is not common because a significant deviation will ruin the part. Developing 
control manufacturing processes in a way to achieve desired properties in the final product is not a new 
attempt. It started from simple trial and errors and gradually developed to complicated multiple-layer 
feedback control systems to manipulate system settings for real-time control [1-18]. However, growing 
demand for controlling more and more detailed and complicated properties of products overpassed 
current science and many scientists tried to come up with new methods to overcome this challenge. As 
a data- driven methodology is more intuitive with a model-based system, our proposed approach 
outlines such a control system where the model is developed by training a machine learning algorithm. 
We explored across many regression algorithms for the developing our models including linear 
regression (ordinary least square), regularized linear regression: Lasso (L1- regularization) and Ridge 
(L2-regularization), boosted and bagged decision trees [19-27]. We did not consider neural 
networks for this framework. Although, a recurrent neural network model trained on temporal features 
can be combined with a feed-forward neural network trained on non-temporal features, training deep 
neural networks would take hours to train which is many order of magnitudes time more than the 
simulation time for FEMs and not feasible for a real-time prediction system where training has 
happened in-situ. Further, algorithms based on auto regression and moving average such as ARIM 
would not be able to capture spatial non-temporal relationships. This is also evident from our 
benchmarking experiment in Table I. We considered two metrics R2 (coefficient of determination) and 
% MAE to evaluate the performance of the models. Algorithms using an ensemble of decision trees 
have achieved state of the art results for various machine learning tasks [28-36]. As a non-
parametric method like decision trees performed better than parametric methods like linear 
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regression, we decided to explore both boosting and bagging decision trees. Ensemble-based methods 
have been successful in tackling problems with sequential components. While AdaBoost and XGBoost 
are tree-based ensemble boosting algorithms in which each successive tree harnesses the decision made 
by the previous tree, bagged algorithms like Random Forest(RFs) and ERTs make a decision based 
on the average of many different trees. For both boosting and bagging, weak learners are utilized in the 
form of trees with limited depth. Boosting models are sequential learners and harnesses weak learners 
in sequence [37-43]. As bagged models use many weak tree-based learners in parallel, and hence can 
be parallelized in the order of the number of processors. As the time of training is essential for a 
real-time application, we choose bagged decision trees and in particular, ERTs as they outperform 
RFs for our experiments. Table I demonstrates the performance of all the different algorithms trained 
on the first 200 time steps for predicting the next 300 time steps. ERTs use an ensemble of decision 
trees in which a node split is selected completely randomly with respect to both variable index and 
variable splitting value [44-51]. ERTs are very good generalized learners and perform better in the 
presence of noisy features. As compared to RFs, ERTs decrease the variance and increase the bias by 
randomly selecting a node split independent of the splitting value. Both RFs and ERTs can utilize 
bootstrap aggregation wherein each weak learner builds a model based on a random sample of 
observations from the training data, with replacement [52-59]. Bootstrap aggregation helps in reducing 
variance in bagged ensembles. Researchers have proposed rolling recursive or iterative au- to 
regressive moving average modeling for time series pre- diction. In this work, we decided to explore 
iterative prediction based on ERTs as we have a combination of historical as well as spatiotemporal 
features [60-69]. We propose an iterative model in which an initial model is first developed based on 
the ground- truth data. Then, the data points predicted by the initial model is added to the ground-truth 
data to develop a model for the next stage, which predicts the temperature profile of voxels for future 
time-steps. We iteratively keep predicting future time- steps using predicted temperature profiles from 
the previous stage alongside ground-truth data. Figure 6 demonstrates the iterative learning process of 
our proposed model [70-79].  

TABLE	I	
COMPARISON	OF	PERFORMANCE	FOR	DIFFERENT	MACHINE	LEARNING	ALGORITHMS	WITH	CORRESPONDING	R2 AND	%	MAE	 BASED	
ON	TRAINING		ON		THE		FIRST		200	 TIMESTEPS		AND		PREDICTING		NEXT		300	TIMESTEPS.	FOR	EACH	ALGORITHM,	WE	EXPLORE	

VARIOUS	HYPERPARAMETERS	AND	PRESENT	THE	BEST	MODEL.	

Algorithm R2 % MAE Training Time 
(in seconds) 

Linear Regression 0.23 25.08 0.52 
Lasso Regression 0.21 23.11 0.53 
Ridge Regression 0.38 17.28 0.56 
ARIMA 0.15 29.39 0.67 
Decision Trees 0.76 9.74 2.30 
AdaBoost (20 trees) 0.89 9.40 9.89 
AdaBoost (50 trees) 0.92 6.45 55.27 
AdaBoost (200 trees) 0.94 3.21 202.58 
XGBoost (20 trees) 0.71 13.25 15.65 
XGBoost (50 trees) 0.96 2.59 30.92 
XGBoost (200 trees) 0.97 2.01 105.67 
Random Forest (20 trees) 0.96 1.66 9.88 
Random Forest (50 trees) 0.97 1.44 26.68 
Extra Trees (20 trees) 0.99 0.81 7.25 
Extra Trees (50 trees) 0.99 0.21 21.32 

	

4.0 RESULT 
In this section, we present the experimental settings and describe the results of the proposed system 
for predicting temperature profiles in an AM process. All experiments are carried out using 
NVIDIA DIGITS DevBox with a Core i7-5930K 6 Core 3.5GHz desktop processor, 64GB 
DDR4 RAM. The python VTK librarywas used for processing and converting the voxel data. 
The data preprocessing, as well as most of the regression models, were implemented using Scikit-
Learn. The XGBoost package was utilized for creating the xgboost model. The ARIMA model was 
trained from the statsmodels package. For the iterative model, we performed extensive grid-search 
across various sizes of time step intervals and found the best results when the time step interval 
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was equal to 20. For the experiments, we evaluate with different combinations and ratios of 
train and test splits. It is to be noted that instead of splitting the train and test set based on a 
fixed fraction, we divided the dataset based on the timesteps. For instance in Table II, we use 
data points up to 1000, 800, 500 and 300 timesteps for training and then we predict the next 
200, 400, 700, and 900 timesteps respectively. For instance, when we use 800 timesteps for 
training and 400 for the test set, it corresponds to about 4.34 million training data points and 
4.71 million test data points. 
 

	

	
Fig.	4.	The	proposed	model	using	ERTs	to	predict	temperature	profiles	for	additive	manufacturing	processes.	It	is	to	be	
noted	that	the	number	of	data-points	predicted	at	each	step	is	not	the	same	as	the	number	of	data-points	for	each	voxel.	
This	is	because	the	model	predicts	not	only	the	temperature	of	the	newly	created	voxels	but	also	the	temperature	of	
the	same	voxels	presents	 in	the	training	set	at	a	 later	time-step.	

	
TABLE	II	

COMPARISON		OF		COMBINATIONS		OF		TIME-STEPS		USED		FOR		TRAINING		AND		TEST		 IN		THE		 ITERATIVE		MODEL		 (WITH	
CORRESPONDING		R2  AND		%	 MAE).	WE	VARY	THE	NUMBER	OF	TIME-STEPS	USED	FOR	TRAINING	AND	VALIDATION.	 THE	TOTAL	

NUMBER	OF	TIME-STEPS	-	 SUM	OF	THE	TRAINING	AND	VALIDATION	TIME-STEPS	 ARE	 ALWAYS	EQUAL	 TO	1200.	

Training Test R2 % MAE 
No. of timesteps No. of datapoints 

(in millions) 
No. of timesteps No. of datapoints 

(in millions) 
1000 6.75 200 2.30 0.992 0.289 
800 4.34 400 4.71 0.989 0.679 
500 1.72 700 7.33 0.982 1.329 
300 0.63 900 8.42 0.972 1.848 

	

TABLE	III	
COMPARISON	OF	PROPOSED	 ITERATIVE	MODEL	WITH	A	DIRECT	MODEL		THAT		DIRECTLY		PREDICTS		THE		TEMPERATURE		OF		 SUBSEQUENT		
POINTS.	 WE	PRESENT	THE	TIME	TAKEN	AS	WELL	AS	REGRESSION	METRICS	(CORRESPONDING	R2 AND	%	 MAE)	 FOR	BOTH	THE	MODELS.	
THE	INITIAL	NUMBER	OF	TIME-STEPS	USED	FOR	TRAINING	IS	SET	TO	200	 AND	THE	SIZE	OF	THE	ITERATION	IS	SET	AS	20	 TIME-STEPS.	WE	

VARY	THE	NUMBER		OF		FUTURE	TIME-STEPS	 PREDICTED.	

	

	

	

	

	
 

 
that directly predicts temperatures of future time steps varying between 200 to 1000. This experimental 
design of selecting training data based on time steps instead of layers also helps in generalizing the 
training set-up. For instance, the first 200 time steps would represent a few completed layers and an 
incomplete layer. The same intuition follows for the time steps in the test set. By training on 
different time steps allows us to generalize the framework to different shapes. Although the direct 
model is much faster, the iterative model performs much better than the direct model. For instance, 
while predicting the temperature for 1000 future time steps, the iterative model takes 353.96 seconds, 
the direct model requires 0.29 seconds. However, we can observe that the % MAE value of the direct 
model is much worse as compared to the iterative model. While the iterative model has R2 between 
0.97 and 0.99 and % MAE between 0.68 to 1.73 %, the direct model has R2 between 0.79 and 
0.92 and % MAE between 5.39 to 6.63 %. The results in Table IV illustrates that interior and edge 
(vertical) voxels comprise the bulk of the voxels (40.15% and 49.20%). This is anticipated as for any 
new layer created, none of the voxels in the new layer would have a vertical neighbor until a new layer 
is deposited. We also find that there is no significant difference in the prediction accuracy between 

Iterations Future 
Timesteps 
Predicted 

Iterative Model Standard Model 
 

Time 
(in seconds) 

 
R2 

 
% MAE 

 

Time 
(in seconds) 

 
R2 

 
% MAE 

10 200 68.69 0.989 0.675 0.293 0.921 5.39 
20 400 137.08 0.978 1.444 0.308 0.906 5.71 
30 600 210.04 0.976 1.489 0.317 0.876 6.07 
40 800 278.61 0.971 1.903 0.480 0.861 6.55 
50 1000 353.96 0.969 1.721 0.590 0.794 6.63 
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the type of voxels. This demonstrates further that our iterative prediction model is able to learn the 
temperature profiles for both edge voxels as well as interior voxels. 

 
TABLE	IV	

COMPARISON		OF		R2  AND		MEAN		ABSOLUTE		ERROR%	 ACROSS		THE	DIFFERENT		TYPES		 OF		 VOXEL	

Type of voxel % of overall 
voxels 

R2 % MAE 

Interior 40.15 0.990 0.916 
Edge (Lateral) 4.92 0.992 0.898 
Edge (Longitudinal) 5.09 0.988 0.923 
Edge (Vertical) 49.20 0.989 0.918 
Edge (Diagonal) 0.63 0.988 0.926 

 
 
 

TABLE	V	
COMPARISON	 OF	 NUMBER	 OF		 TREES/ESTIMATORS		 IN		 THE		 ENSEMBLE.	 AS	WE	VARY	THE	NUMBER	OF	ESTIMATORS,	 WE		PRESENT		
THE		TRADE-OFF		IN	THE	 FORM	 OF	 TIME	 AND	R2 AND	 MEAN	 ABSOLUTE	 ERROR%.	THE	NUMBER	OF	VOXELS	PREDICTED	IN	EACH		

ITERATION		IS		25,	 AND		THERE	ARE	40	STEPS	 IN	 EACH	 ITERATION	

No. of estimators Overall Time 
(in seconds) 

R2 % MAE 

4 154.5 0.964 2.14 
10 257.5 0.970 1.38 
20 493.2 0.975 1.29 
50 902.4 0.981 1.03 

 
5.0 CONCLUSIONS 

This paper presents essential components of a scientific framework for a model-based real-time AM 
control system. The proposed approach utilizes extremely randomized trees - an ensemble of bagged 
decision trees as the regression algo- rithm iteratively using temperatures of prior voxels and laser 
information as inputs to predict temperatures of subsequent voxels and is able to achieve % MAE 
below 1% for predicting temperature profiles. One of the advantages of a real-time system is 
instead of training a prior model ahead of time, one can be trained in-situ. It is crucial for the 
versatility of the AM ML-driven simulation process, especially as factors such as laser path, laser 
speed, and laser temperature can largely influence the temperature profile. In the future, we plan to 
explore the impact of voxel mesh size on the prediction results across coarse to finer mesh. The next 
goal of this framework is to be part of an interleaved FEM-ML control system that harnesses the 
temperature profile of the odd layer (Layer i) calculated using FEM to predict the subsequent even 
layer (Layer i	+	 1). Layer i	+	 2	 will then be calculated using FEM simulation, and Layer i	+	 3	
will be predicted. This can accelerate the speed of simulations by nearly a factor of two, hopefully 
without impacting the accuracy significantly. Although this work restricts itself to temperature profile 
prediction for an AM process, the same idea can be extended to related manufacturing processes such 
as incremental forming [59]. In general, this work can be extended to any phenomenon which utilizes 
partial differential equation based modeling. 
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