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ABSTRACT 
This paper presents a novel X-ray Computed Tomography (CT) image analysis method to char- 
acterize the Fracture Process Zone (FPZ) in scaled centre-notched quasi-isotropic carbon/epoxy 
laminates. A total of 61 CT images of a small specimen were used to fine-tune a pre-trained 
Convolutional Neural Network (CNN) (i.e., VGG16) to classify fibre orientations. The proposed CNN 
model achieves a 100% accuracy when tested on the CT images of the same scale as the training set. 
However, the accuracy drops to a maximum of 84% when tested on unlabelled images of the 
specimens having larger scales potentially due to their lower resolutions. Another code was developed 
to automatically measure the size of the FPZ based on the CNN identified 0◦ plies in the largest 
specimen which agrees well with the manual measurement (on average within 3.3%). The whole 
classification and measurement process can be automated without human intervention. 
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1.0 INTRODUCTION 
A size effect describes the change of strength with specimen dimensions [1-13]. It has significant 
implications on the strength prediction of full-scale aerospace structures, which were proven to be 
challenging [13-27]. Previously, in-plane scaled centre-notched quasi-isotropic (QI) carbon/epoxy 
specimens were tested, and the tensile strength was found to decrease with increasing specimen 
dimensions [28-34]. The size effect was associated with a Fracture Process Zone (FPZ) ahead of the 
centre-notch tips. It is crucial to characterize the FPZ in order to explain the size effect in QI laminates. 
FPZ was studied by using a variety of techniques including Digital Image Correlation (DIC) [35–47], 
and X-ray Computed Tomography (CT) [48-59]. DIC can generate surface strain fields automatically, 
which is then associated with the size of FPZ via some assumptions, e.g., force equilibrium being 
achieved at the FPZ boundary in [60-67]. Compared with DIC, CT scanning can objectively quantify 
internal damage, such as in 0◦ plies, and accurately determine the size of FPZ. By using CT scans, it 
was found that the size of the FPZ, which was quantified by the fibre breakage length in the 0◦ plies, 
initially scaled with the notch size and then approached a plateau at larger scales, leading to a change 
of scaling law [68-78]. However, processing CT data is a time-consuming manual process. Automation 
of CT analysis for FPZ characterization can potentially further promote the adoption of CT scanning.	
Convolutional Neural Networks (CNN) are an excellent tool for computer vision tasks like image 
recognition and classification. CNNs are usually built using three types of layers: (i) convolutional 
layers, (ii) sub-sampling layers, and (iii) fully connected layers. The convolutional layers employ a set 
of filter masks, also called feature detectors, to capture the relevant patterns (i.e., feature maps) in the 
dataset images. Once the relevant features of the images are detected, sub-sampling (or pooling) layers 
are usually utilized to decrease the feature maps’ spatial resolution, which in turn reduces the reliance 
on precise positioning within feature maps produced by the convolutional layers. Disregarding the 
exact position of features within a feature map while maintaining the relative position of features with 
respect to each other allows for a better CNN performance on inputs that relatively differ from the 
training data. The final convolutional or sub-sampling layer is flattened and connected to fully 
connected layer(s) to perform the classification task. CNNs have been used to analyse images of 
advanced materials, such as a bicontinuously nanostructured copolymer [1-22], and 3D-printed metal 
[23-48] to characterize cracks. Trained by finite element simulations, these CNNs derived accurate 
fracture properties, including crack length and fracture toughness. CNNs have been widely applied to 
medical CT analysis, such as for intraoperative imaging, to improve surgical precision as reviewed by 
Alam et al. [49-58]. However, only a few articles were published on CT analysis of advanced 
composites using CNNs. For example, Yang et al. [13] adopted a U-net CNN to reconstruct a rubber 
composite structure from only tens of micro-CT images. Chen et al. [59-67] also adopted a U-net deep 
CNN to create digital material twins for woven ceramic-matrix composites from micro-CT images. 
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Tian et al. [68-78] used a mask and regional CNN to detect local cracks from CT images of concrete. A 
deep CNN was also used to detect surface or near-surface defects in composites from X-rays [1-16]. 
Some work on characterization of individual fibre orientation has been done using dictionary-learning 
[17-38] in which a segmentation method could accurately extract individual fibres from low contrast 
X-ray scans of composites with high fibre volume fraction. However, classification of fibre 
orientations using CNNs from CT images has not been done. This is extremely useful for the 
determination of fracture properties of composites, such as the size of FPZ. This paper presents a novel 
CT analysis method using a CNN for classification of fibre orientations and then another code to 
measure FPZs. The proposed workflow is established to automatically measure the FPZ size in centre-
notched QI carbon/epoxy laminates in two steps [39-48]. First, a pre-trained, fine-tuned VGG16 CNN 
was trained using labelled CT images of the centre-notched specimens from interrupted tests at 95% of 
average failure load. Then, the CNN was applied to the unlabelled CT images of the other centre-
notched specimens having different scales to classify their fibre orientations. A test accuracy of 100% 
for the former and a maximum prediction accuracy of 84% for the latter were achieved. After the 0◦ 
plies were identified, the size of the FPZ in the largest centre-notched specimen was automatically 
measured to understand the size effect by using an image analysis workflow [49-58]. To the author’s 
best knowledge, this paper is the first to use a CNN for the classification of fibre orientations in multi-
directional composites from CT images. The present method can potentially automate CT analyses for 
FPZ evolution with notches [59-65]. In doing so, it can improve accuracy and efficiency and reduce 
potential human errors [66-78]. 

2.0 EXPERIMENTAL 
A schematic of the in-plane scaled centre-notched QI specimens is shown in Fig. 1(a). The specimens 
with a notch length of ! = 3.2 mm is referred to as the baseline, ! = 6.4 mm as Scale 2, ! = 12.7 mm 
as Scale 4 and ! = 25.4 mm as Scale 8. The schematic of the largest centre-notched specimens with a 
notch length of ! = 50.8 mm (Scale 16) is shown in Fig. 1(b). Only their width and notch length are 
doubled from the Scale 8 specimens, while their gauge length remains the same. Scale 16 specimens 
were not fully scaled due to limitations of the facilities. It was found that the specimens with a halved 
gauge length of the baseline specimens had a similar tensile strength within 3% [4]. The material used 
was HexPly® (Hexcel, US) IM7/8552 carbon-epoxy unidirectional pre-preg with a cured nominal ply 
thickness of 0.125 mm. The stacking sequence was [45⁄90⁄−45⁄0]4", for all the sizes. The nominal 
specimen thickness was 4 mm. The centre notches were cut with a 1 mm end mill on a computer 
numerical controlled milling machine. Then the notch tips were manually extended by using 0.25 mm-
wide piercing saw blades. 250 kN Instron and 500 kN Dartec hydraulic-driven test machines were 
used. The scaled specimens were tested under tension using displacement control with scaled loading 
rates for different gauge lengths, e.g., 0.25 mm/min for the baseline, 0.5 mm/min notch tips to achieve 
a pixel size of 106 µm. The edges of the strip were kept away from the centre notch, so no further 
damage was introduced to the existing FPZ at the notch tip as shown in Fig. 2. The 3D CT volumes 
were segmented into 2D CT images for each ply through the specimen thickness in VG Studio Max 
(Volume Graphics, Germany). The previously labelled CT images from the single CT scan of the 
Scale 2 specimen were used for training, validation, and testing of the CNN for image classification. 
Then the CNN was applied to the unlabelled CT images of Scale 4, Scale 8, and Scale 16 specimens to 
classify their fibre orientations. The details are explained in Section 4.1. 
 

 
Fig. 1 Schematic of (a) in-plane scaled centre-notched specimens with ! = 3.2 to 25.4 mm and (b) 

largest specimen with ! = 50.8 mm. 
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Fig. 2 Typical CT images of Scale 16 specimen (a) 45◦ (b) 90◦ (c) −45◦ (d) 0◦. 

 
3.0 METHODOLOGY 

Training a CNN from scratch to obtain a high classifier accuracy requires significantly more training 
data than is feasible in this case due to the expensive nature and the human resources necessary to run 
the CT scans. Data augmentation and transfer learning were used in this paper to overcome the 
relatively limited training set size. Additionally, the CT images were standardized by making the mean 
of the entire dataset equal to zero and the standard deviation equal to one. Transfer learning allows for 
good accuracy when dealing with small datasets by taking a pre-trained neural network and re-
purposing its learned features and weights to model a different dataset. The ability of several well-
known CNN architectures and weights to fit and classify our dataset was investigated [1- 23]. A fine-
tuned version of VGG16 yielded the best accuracy in our case, with a 100% ability to provide the 
correct classification for the considered testing set using labelled CT images. VGG16 won the first and 
second places in the ImageNet Large Scale Visual Recognition Competition (ILSVRC) 2014 in the 
localization and the classification tasks, respectively [24-39]. The ImageNet dataset used in training 
VGG16 includes over 14 million images belonging to around 22 thousand categories [20,21]. VGG16 
comprises 16 trainable layers interspersed with sub-sampling layers, as shown in Fig. 3, and is 
considered as one of the excellent vision model architectures. In this paper, the pre-trained weights of 
the convolutional layers have been maintained while optimizing the weights of the two last fully 
connected layers to model the dataset. A stochastic gradient descent optimizer was adopted with a 
learning rate of 10−3, a decay of 10−6, and a 0.9 momentum paired with Nesterov’s accelerated 
gradient [40-63].  
 
 

 

Fig. 3 Proposed CNN architecture based on VGG16 with fine-tuning. 
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Fig. 4 Proposed CNN model: model accuracy (left) and loss function value (right) over epochs. 

 
4.0 RESULTS 

The objective of the proposed CNN is to classify fibre orientations in the in-plane scaled centre-
notched specimens into three classes, 0◦, 45◦, and 90◦ plies, based on CT images from the interrupted 
tests according to the flowchart in Fig. 6. A total of 61 labelled CT images from the Scale 2 interrupted 
test were used for the (i) training, (ii) validation and (iii) testing of the CNN. All above images were 
augmented by horizontal flipping, rotating, and shifting the original CT images in each set using 
Keras’s image data generator class [64-78]. The baseline specimen has a different damage pattern in 
the centre 0◦ ply compared to other sizes, so it is not used in the CNN. The Scale 2 images have better 
quality than the even larger scales, so are chosen for training. The Scale 2 images were approximately 
split into an 80% training set and a 20% validation & testing set. Specifically, the training set 
comprised 12 CT images of the 0◦ plies, 25 of the 45◦ plies, and 12 of the 90◦ plies. The validation & 
testing set contained 4 CT images of the 0◦, 4 of the 45◦, and 4 of the 90◦ plies. Each ply was sliced 
once. The CNN reached a 100% model accuracy after 20 epochs, based on a categorical cross-entropy 
loss function. It contains the accuracy (left) and loss function value (right) of a trained model showing 
a 100% model accuracy. The corresponding confusion matrix normalized by the numbers of tested 
images for each considered fibre orientation is shown in Fig. 5. It shows fibre orientation prediction; 
diagonal-terms all being 1 mean that the trained model identified all fibre orientation correctly. They 
show that the predicted fibre orientations agree extremely well with the true fibre orientations within 
the training set. The total run time was 1.7 s and the time per step at the final epoch was 0.27 s, 
demonstrating the computational efficiency of the current CNN model. Once training, validation, and 
testing were completed based on the Scale 2 CT images, the CNN was also applied to Scales 4, 8, and 
the new Scale 16 CT images to predict their fibre orientations. The prediction accuracy dropped to 
83.9% for Scale 4, 62.6% for Scale 8, and 60.1% for Scale 16 as shown in it. This means that when the 
scale of the target CT images is closer to that of the training dataset, the prediction accuracy is higher. 
However, it was preferred to use the CNN trained by the Scale 2 CT images to identify the 0◦ plies of 
the largest Scale 16 specimen for two practical reasons: (i) this proposed bottom-up approach is more 
in line with the test pyramid approach for real-world applications and (ii) the new FPZ measurements 
for Scale 16 specimens are more representative of the material properties since the FPZ from the 
smaller specimens are not fully developed [4]. The FPZ size is defined as the average horizontal 
distance between the furthest fibre breakage point to the notch tip in the single 0◦ plies. The furthest 
fibre breakage point is often marked by the last 0◦ split in the specimen, but practically represented the 
furthest pixel in black in the CT images. Previously, the size of FPZ was measured manually for the 
baseline, Scale 2, Scale 4, and Scale 8 specimens as shown in it [4]. In the current study, the FPZ 
measurements were done both manually and automatically based on the new set of CT images from the 
Scale 16 specimen. A spatial scale was printed on the images during the CT analysis. After the CNN 
was trained and used to identify the 0◦ plies, a workflow was developed to automatically post-process 
the CT images by isolating the spatial scale and the crack to measure its dimensions as shown in Fig. 6. 
First, the images were cropped and resized while preserving the original images’ aspect ratio. The 
crack and spatial scale’s colour gamut was then isolated from the rest of the image. The scale to pixel 
ratio was then calculated from the filtered image, which was then used to calculate the size of the FPZ 
based on the number of pixels occupied by the crack. As a comparison, manual measurements were 
also done using the software Image J (National Institutes of Health, US) by comparing the number of 
pixels for the FPZ and that for the scale. The automatic measurements of the FPZ are compared with 
the manually measured values in out of the total 12 considered, the automatically measured FPZ size is 
2.79 mm, with an average relative percentage error of 3.3% from the manual measurement. The last 
three measurements, however, show a large discrepancy. The reason for this is because some excessive 
dye penetrant remains in the pre-existing crack tip, which misleads the code to believe that it is part of 
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the FPZ. These three measurements are an artefact of the image processing analysis, so they are 
excluded when calculating the size of the FPZ. 

5.0 DISCUSSION 
One may argue that this satisfactory result (a 100% model accuracy) emanates from over-interpretation 
(or over-fitting) of the training dataset. This may be true for a small dataset (≤ 100 data) used for 
training. In this work, VGG16 was the backbone of the CNN architecture and fine-tuned with 
optimizing the weights of only last fully connected layers. As previously stated, data augmentation and 
transfer learning was applied to try to avoid potential over-fitting of the model. The CNN model is 
currently being improved with cross-validation, feature selection, and regularization techniques to 
simplify its architecture, thus overcoming potential over-fitting issue. It is not surprising that the 
accuracy dropped, depending on how different the scale of the target CT images is from the training 
dataset. The CNN generally predicted the fibre orientations from the CT images of the relatively 
smaller specimens (Scale 4) more accurately than from the larger specimens (Scales 8 and 16). This is 
potentially due to nosier CT data and poorer CT image quality at the larger scales. More work is 
needed to improve the proposed CNN prediction accuracy when dealing with the unlabelled CT images 
of different specimen sizes. When identifying fibre orientations in the centre-notched QI carbon/epoxy 
laminates, the CNN initially showed a high accuracy level. However, the code had limitations when 
measuring the FPZ from the identified 0◦ plies, such as not recognizing the excessive dye penetrant. 
This illustrates that the second automated step for FPZ measurement could be further improved, e.g., 
by creating a mask using a threshold optimized for each CT image. The new CT images confirmed that 
the measured FPZ size of the Scale 16 specimens (! = 50.8 mm) does not double when compared to 
the previously reported 2.28 mm for the Scale 8 specimens (! = 25.4 mm) [4]. Instead, it approaches an 
approximately constant size while the notched strength approaches a fracture-mechanics scaling 
asymptote [4]. 

6.0 Conclusions 
A Convolutional Neural Network (CNN) has been successfully implemented for in-plane scaled centre-
notched carbon/epoxy quasi-isotropic laminates to classify fibre orientations based on X-ray Computed 
Tomography (CT) images. It achieved a 100% test accuracy on the labelled Scale 2 CT images (the 
same scale as the training set) and a maximum prediction accuracy of 84% using the unlabelled CT 
images of the other sized specimens (Scales 4, 8 and 16). After the 0◦ plies were identified, the size of 
the FPZ from the new CT images of the Scale 16 specimen was automatically measured using another 
newly developed image processing code. The automatically measured FPZ size agrees well with the 
manually measured average value using Image J - an open-source image analysis software platform - 
with an average relative error of 3.3%. The current method enables the automation of FPZ 
characterization from CT images, potentially eliminating human interventions while maintaining good 
accuracy. 
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